Start

Active Inference Curriculum Creation Pipeline

Overview

The START project provides a comprehensive, AI-powered pipeline for creating personalized Active Inference and Free Energy Principle curricula. The system uses real-time research via Perplexity API and advanced LLM-based content generation to produce professional-grade educational materials.

Pipeline Stages

Stages

Links

1. Research Phase 🔍

2. Curriculum Generation ✍️

3. Visualization Creation 📊

4. Multilingual Translation 🌍

Script Entrypoints

Core Curriculum Creation Scripts

# Configuration-based research (NEW APPROACH)
learning/curriculum_creation/1_Research_Domain.py    # Domain analysis
learning/curriculum_creation/1_Research_Entity.py    # Audience profiling  
learning/curriculum_creation/2_Write_Introduction.py # Curriculum generation
learning/curriculum_creation/3_Introduction_Visualizations.py # Charts & diagrams
learning/curriculum_creation/4_Translate_Introductions.py     # Multilingual output

Supporting Infrastructure

src/perplexity/           # Perplexity API integration
src/common/               # Shared utilities (paths, config, prompts)
src/config/               # Configuration management
src/visualization/        # Visualization generation

Data Architecture

Input Configuration

data/config/
├── entities.yaml         # Target learner profiles (8 entities)
├── domains.yaml          # Professional domains (16 domains) 
└── languages.yaml        # Translation targets (9+ languages)

Research Outputs

data/
├── audience_research/     # Personalized learner analysis
├── domain_research/       # Professional domain analysis
├── written_curriculums/   # Generated curriculum content
├── translated_curriculums/ # Multilingual versions
└── visualizations/        # Charts and diagrams

Template System

data/prompts/
├── research_domain_analysis.md     # 6-section domain framework
├── research_domain_curriculum.md   # 9-section curriculum generation
├── research_entity.md              # 6-section personalization
├── curriculum_section.md           # Comprehensive module creation
└── translation.md                  # 7-section multilingual framework

Enhanced Features

Configuration-Driven Research

Advanced Command-Line Interface

# Filter by priority and category
python 1_Research_Domain.py --priority high --category life_sciences

# Process specific targets
python 1_Research_Entity.py --entity karl_friston --overwrite

# Multilingual output with specific languages
python 4_Translate_Introductions.py --languages Spanish French German

Comprehensive Content Generation

API Integration

Perplexity API (Research)

OpenRouter API (Content Generation)

Quality Assurance

Content Standards

Technical Standards

Cross-References